skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Josselyn, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The global metal market, expected to exceed $18.5 trillion by 2030, faces costly inefficiencies from defects in alloy manufacturing. Although microstructure analysis has improved alloy performance, current numerical models struggle to accurately simulate solidification. In this research, we thus introduce AlloyGAN - the first domain-driven Conditional Generative Adversarial Network (cGAN) involving domain prior for generating alloy microstructures of previously not considered chemical and manufactural compositions. AlloyGAN improves cGAN process by involving prior factors from solidification reaction to generate scientifically valid images of alloy microstructure given basic alloy manufacturing compositions. It achieves a faster and equally accurate alternative to traditional material science methods for assessing alloy microstructures. We contribute (1) a novel Alloy-GAN design for rapid alloy optimization; (2) unique methods that inject prior knowledge of the chemical reaction into cGAN-based models; and (3) metrics from machine learning and chemistry for generation evaluation. Our approach highlights the promise of GAN-based models in the scientific discovery of materials. AlloyGAN has successfully transitioned into an AIGC startup with a core focus on model-generated metallography. We open its interactive demo at: https://deepalloy.com/ 
    more » « less
  2. Corrosion is a prevalent issue in numerous industrial fields, causing expenses nearing $3 trillion or 4% of the GDP annually with safety threats and environmental pollution. To timely qualify and validate new corrosion-inhibiting materials on a large scale, accurate and efficient corrosion assessment is crucial. Yet it is hindered by a lack of automatic tools for expert-level corrosion segmentation of material science experimental images. Developing such tools is challenging due to limited domain-valid data, image artifacts visually similar to corrosion, various corrosion morphology, strong class imbalance, and millimeter-precision corrosion boundaries. To help the community address these challenges, we curate the first expert-level segmentation annotations for a real-world image dataset [1] for scientific corrosion segmentation. In addition, we design a deep learning-based model, called DeepSC-Edge that achieves guidance of ground-truth edge learning by adopting a novel loss that avoids over-fitting to edges. It also is enriched by integrating a class-balanced loss that improves segmentation with small area but crucial edges of interest for scientific corrosion assessment. Our dataset and methods pave the way to advanced deep-learning models for corrosion assessment and generation – promoting new research to connect computer vision and material science discovery. Once the appropriate approvals have been cleared, we expect to release the code and data at: https://arl.wpi.edu/ 
    more » « less
  3. Deep learning often relies on the availability of a large amount of high-quality labeled data, which can be very limited in novel domains. To address such data scarcity, domain adaptation is one promising approach that allows for deep networks to leverage large amounts of available data from a source domain to enhance the model’s efficacy on the target domain of interest. However, while there is a plethora of alternate models for domain adaptation proposed over many years in the literature, there is a dearth of studies that objectively compare the relative effectiveness of these models in a rigorous, empirical study. To fill this gap, we provide a thorough, unbiased, empirical study of five state-of-the-art (SOTA) deep domain adaptation models proposed over the past 6 years whose codes are publicly available. Models are evaluated on the complex and diverse domain adaptation tasks featured in the DomainNet benchmark dataset as well as the popular Office-31 dataset. Our results suggest that (1) all 5 models perform similarly, on average, and do not even significantly beat the oldest model, and (2) counter to their intended purpose, the transfer loss functions in the literature do not contribute significantly to learning transferable representations. Our observations suggest that domain adaptation research needs to more thoroughly compare newly proposed models against existing works, along with assessing their loss functions’ utility thoroughly. Our code and data splits are made public for reproducibility of results by the community. 
    more » « less
  4. Corrosion of materials impacts critical economic sectors from infrastructure, transportation, defense, health, to the environment. The development of safe anti-corrosive materials is thus an important area of study in materials science. Corrosion science of preparing materials and then monitoring their corrosion under adverse conditions is labor intensive, time consuming, and extremely costly. While deep learning has become popular in automating various engineering tasks, the development of deep models for corrosion assessment is lacking. We are the first to study deep domain adaptation (DA) models for the automated assessment of the corrosion status of anti-corrosive materials. Corrosion data, i.e., photographic images of treated corroding materials, is abundant when produced in artificially controlled laboratory settings, while corrosion image data sets from rich natural outdoor environments are more challenging to produce and thus much smaller. We leverage the more readily available indoor corrosion data to train a classifier and then transfer it via deep domain adaptation to also perform well on the small yet more realistic outdoor corrosion image data set – without requiring target labels. We empirically compare 5 popular domain adaptation models on real-world corrosion image data sets. Our study finds that DA achieves 27% improvement in test accuracy compared to the performance of the no-DA baseline for classifying real-world outdoor corrosion data. 
    more » « less